DFT investigations for the reaction mechanism of dimethyl carbonate synthesis on Pd(II)/β zeolites.

نویسندگان

  • Yongli Shen
  • Qingsen Meng
  • Shouying Huang
  • Jinlong Gong
  • Xinbin Ma
چکیده

Density functional theory (DFT) calculations have been used to investigate the oxidative carbonylation of methanol on Pd(II)/β zeolite. Activation energies for all the elementary steps involved in the commonly accepted mechanism, including the formation of dimethyl carbonate, methyl formate and dimethoxymethane, are presented. Upon conducting the calculations, we identify that the Pd(2+) cation bonded with four O atoms of the zeolite framework acts as the active site of the catalyst. Molecularly adsorbed methanol starts to react with oxygen molecules to produce a methanediol intermediate (CH2(OH)2) and O atom. Then, another methanol can react with the O atom to produce the (CH3O)(OH)-Pd(II)/β zeolite species. (CH3O)(OH)-Pd(II)/β zeolite can further react with carbon monoxide or methanol to give monomethyl carbonate or di-methoxide species ((CH3O)2-Pd(II)/β zeolite). Dimethyl carbonate can form via two distinct reaction pathways: (I) methanol reacts with monomethyl carbonate or (II) carbon monoxide inserts into di-methoxide. Our calculation results show the activation energy of reaction (I) is too high to be achieved. The methanediol intermediate is unstable and can decompose to formaldehyde and H2O immediately. Formaldehyde can either react with an O atom or methanol to form formic acid or a CH3OCH2OH intermediate. Both of them can react with methanol to form the secondary products (methyl formate or dimethoxymethane). Upon conducting calculations, we confirmed that the activation energies for the formation of methyl formate and dimethoxymethane are higher than that of dimethyl carbonate. All these conformations were characterized at the same calculation level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y

The mechanism of dimethyl carbonate (DMC) synthesis from oxidative carbonylation of methanol over Cu-exchanged Y zeolite has been investigated using in situ infrared spectroscopy and mass spectrometry under transient-response conditions. The formation of DMC is initiated by reaction of molecularly adsorbed methanol with oxygen to form either monoor di-methoxide species bound to Cu+ cations. Rea...

متن کامل

Theoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex

Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...

متن کامل

Theoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex

Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...

متن کامل

Preparation of Solid Superacid SO42-/ZnO-TiO2 and Its Action on Synthesis of Dimethyl Carbonate from Urea and Methanol

SO42-/ZnO-TiO2 catalyst was prepared by sulfating ZnO-TiO2 powders with H2SO4 solution. The catalyst was characterized by XRD, IR and Hammett indicator. The catalyst showed strong acidity(H0 ≦-16.0). The optimum conditions are found that the calcination temperature is 823K and the so...

متن کامل

Synthesis, Characterization and Crystal Structure Determination of Copper (II) Complexes with 2,2′-Dimethyl-4,4′-bithiazole

Copper(II)  complex  [Cu(dmbt)2(H2O)](ClO4)2 (1)  was  prepared  from  the  reaction  of  copper(II) perchlorate  hexahydrate  with  2,2'-dimethyl-4,4'-bithiazole  (dmbt)  ligand  in  methanol  at  ambient temperature. The complex was quantitatively and qualitatively characterized by elemental analysis, absorption  and  infrared  spectrometries.  Complex  [Cu(DMSO)5](ClO4)2 (2)  was  also  synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 31  شماره 

صفحات  -

تاریخ انتشار 2013